

最新アプリ&プローブ活用法 П

肝疾患における Virtual Touch Quantificationの有用性

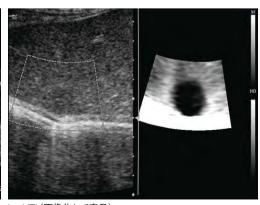
吉田 昌弘 兵庫医科大学超音波センター 飯島 尋子 兵庫医科大学超音波センター・内科・肝胆膵科

肝臓は、触診による硬さ診断が古くか ら行われてきたが客観性に乏しく、また、 超音波による画像診断も形態診断には有 用であるが、硬さ診断は困難であった。 近年、超音波を利用した肝線維化診断の 有用性が多数報告されている。2008年に ARFI (acoustic radiation force impulse) 現象を利用した「ACUSON S2000」(シーメンス社製)が発売されたが、 本稿では、ACUSON S2000による "VTQ (Virtual Touch Quantification)"を利用 した肝疾患診断について解説する。

VTQの原理と特徴

VTQは、ARFIの作用により発生した shear wave (剪断弾性波) の伝播速度を 測定することで. 硬さを数値測定できる アプリケーションである。ARFIとは、超 音波の放射によって物体を後方へ押しや る力が生じる物理現象である。この現象

を利用することで、用手的圧迫を加える ことなく組織弾性イメージングを得るこ とができる。shear wave とは、持続時 間が約200~300 usの収束超音波パル ス(プッシュパルス)を測定部位に照射 すると、ARFI作用により組織が後方に 押され、1~20 um程度の微細な変位 を起こす。この変位は剪断歪みと呼ばれ ている。プッシュパルスの出力が終了す ると、圧迫から開放された組織は元の位 置に戻ろうと移動する。この時に、周囲 組織に伝播する横波が shear wave であ る。shear waveは硬い組織では速く伝 わり、軟らかい組織では遅くなる。 shear waveの速度 (velocity of shear wave: Vs) は、肝臓でおよそ1~5m/s である。shear wave は水平方向に伝播 する横波のため、プローブでは直接感知 できない。そこで、先にROI (region of interest) 内を探索スキャンして、shear wave の伝播による組織位置の変化を検 出し、Vsを測定する。VTQの動作プロ セスは瞬時(1秒以内)に行われ、測定 はきわめて簡単であり、次のような特徴 がある¹⁾。


- ① 組織の硬さを絶対的な数値 (m/s) で表示できる。
- ② 超音波断層像を見ながら任意の部位 の測定ができる。
- ③ 簡便かつ繰り返し測定が可能である。
- ④ 検査者依存性が低い。

VTQの測定は、当院ではACUSON S2000を使用している。ACUSON S2000にはVTQと "VTI (Virtual Touch Imaging)"の2種類のアプリケー ションが搭載され (図1),「ACUSON S3000 | (シーメンス社製) には組織の絶 対的な硬さのカラーマッピングが可能な "VTIQ (Virtual Touch IQ)"が搭載さ れている。

測定方法は、右肋間よりプローブをで きるかぎり垂直に当てて、 あまり圧迫せ

a:VTQ(数値で定量化)

b: VTI (画像化して表示)

測定法の種類:VTQとVTI

- a:VTQでは、目的とする部位にROI を設定し、そのVsを測定する。本 症例は肝細胞がんであり、腫瘍内 のVsは1.94m/sである。
- b: VTIにより、硬さを白黒のイメージ で示す。本症例は転移性肝細胞が んで、腫瘍の部分は真っ黒に表示 され硬いことがわかる。