人工知能で医療は変わるのか — 加速する医療分野の AI 開発の現在と未来

臨床における AI活用の現状と展望

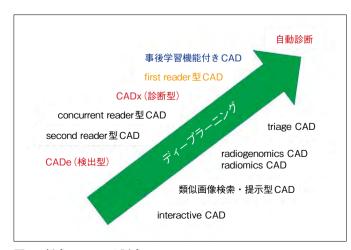
3. CAD実用化20周年に見る新潮流

AI-CADの動向

藤田

R2 Technology社が開発した世界初の 商用コンピュータ支援診断システム (computer-aided diagnosis: CAD) が、「乳 がん X 線画像診断の支援検出 (computeraided detection: CADe) 装置」として米 国食品医薬品局 (以下, FDA) の認可を得 たのは 1998年である。この年は "CAD元 年"と位置づけられ、2018年はちょうど 20周年という記念の年となる1)。すでに、 医用画像の自動診断や支援診断 (CAD) をめざした研究が始まって半世紀余が過 ぎている。これらの開発には、人工知能(AI) の技術が元来用いられてきていたが2), 昨 今の第三次 AI ブームを牽引するディープ ラーニング (深層学習) 技術により、従来 型CADはいま、新生AI-CADとして大きく 飛躍しようとしている。そして、CADの利 用形態には大きな変化が見られる(図1)。 2018年4月にはついに、糖尿病網膜症を スクリーニングする眼底写真のための、専 門医でなくても利用可能な AI ソフトウエ アの商用化も始まった。本稿では、この ようなCADの新潮流について概説する。

CAD利用形態の多様化


CADの商用化という観点からは. 1998年の最初のFDA 承認のマンモグラ フィ CAD、コロノスコピーの CAD、胸 部X線写真や胸部CTのCADのすべて に共通しているのは、その利用形態が 「second reader型」ということである (図2)。これは、まず医師はCADの結果 (病変検出位置のマーカーなど)を参照 せずに読影し、その後、CADの結果を 参考にして最終診断を行う、という使い 方である。かつ、すべてのCADは検出 支援のCADeであった。ところが, 2016年以降、以下に説明するように、 これに変化が起きている。

1. Concurrent reader型CAD

concurrent reader型のCAD (以下, 同時CAD)の定義は、CADの結果(例 えば、検出マーカー)を読影の最初から 見るものであり、second reader型より も読影時間の短縮が期待される。胸部 CT のノジュール検出³⁾ やコロノスコピー のポリープ検出4)で、同時CADの研究 がこれまでも行われており、1症例あた り大量の画像データの読影が必要な診 断領域で、かつスクリーニングでの利用 に期待されている。

最近,以下の2つの同時CADeが FDAの認可を得ている。どちらも. 一部でディープラーニング技術が使われ ているという。

北米放射線学会(以下, RSNA) 2016 の直前(11月)に、QView Medical社と いうベンチャー企業(図3)が開発した

新生 AI-CAD の誕生 ディープラーニングが CAD の進化・多様化を急加速させる。

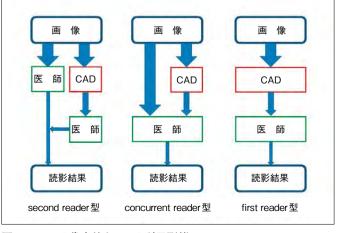


図2 CADの代表的な3つの利用形態 (参考文献3)を参考に作成)