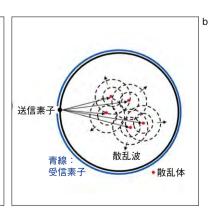
Women's maging

先進的乳がん画像診断技術の臨床応用と可能性 Ш

9. 超音波 CT と乳房画像診断の将来

東 東京大学大学院医学系研究科疾患生命工学センター


本邦では、欧米と比して乳がん検診受 診率が低い。現状では、発見経緯の第1位 が自己発見であり、検診発見の倍である という報告もある1)。効果的な検診の実 現には、受診率の向上と検診の確実性の 向上が求められている。標準的な検診手 段であるマンモグラフィでは、デンスブレ スト(高濃度乳房)の被検者において、が ん発見率が低下することが知られている²⁾。 国内では、乳がん罹患者は40、50歳代の 割合が多く、若年層においてはデンスブレ ストの方の割合が高い。このため、 デンス ブレストの割合が高い若年層においても感 度が高い検診手段が必要とされている。

超音波検査による乳がん検診の有効性 を検証する比較試験 (J-START) では、マ ンモグラフィ単独の場合に比べ. 超音波診 断とマンモグラフィの併用により、がん発 見率が1.5倍に向上することが報告され

ている3)。しかし、超音波診断にも、がん 発見の可能性が検査者のスキルに応じて 見するスキルを持つ必要がある)。また, 現性を高く撮像することが難しい。

東京大学と株式会社Lily MedTechで は、検査者のスキルに依存せず、受診者 に痛みや被ばくリスクを強いることがなく. かつ、再現性が高い高精細撮像が得られ る超音波撮像技術を開発中である。臨床 試験の状況は、すでに本誌2018年6月号 の中島一毅准教授の記事にて紹介されて いるので参照されたい4)。本稿では、動作 原理を中心に解説を行う。

変化するという課題がある(プローブ接触 方法のスキルや、検査者が病変疑いを発 撮像断面の位置や向きの情報が保存され ないことや、プローブ接触により撮像中に 対象の変形が生じるため、同一部位の再

超音波 CT (a) とリングエコー (b) の動作原理の概念図

音速が均一だった時

の伝播時間(点線)

音速が遅い媒体 が存在する時の

伝播時間(実線)

超音波 CT とリングエコー

図1に、リングアレイを用いた超音波 CTとエコー散乱像(以下,後者をリン グエコー)の動作原理を示す。透過波の 伝播時間と振幅のそれぞれが、 伝播経 路上の各画素の伝播時間と減衰量、そ れぞれの積算値に対応する。超音波CT は、リング状のアレイを用いて、さまざ まな伝播方向の透過波を取得すること により、X線CTと同様の原理を用いた 画像再構成が可能となる。音速や減衰 率が異なる領域を透過した波は、伝播 に伴い経路上の積算効果により、透過 波の到達時間分布や強度変化が信号と して抽出. 画像再構成される。

超音波CTは1970年代から検討され ていたが、複雑な屈折経路を考慮した 再構成の実装は、 当時の計算機性能で は実現困難であった⁵⁾。その後、医用超 音波撮像の主流はエコー法となり、ドプ ラやエラストグラフィなど. さまざまな アプリケーション技術の発展につながっ ている。近年、GPUによる大規模な並 列計算が安価に実現可能になったこと により、再び超音波 CTへの関心が高 まっている。

図1 bには、リング状のアレイを用い て, 撮像領域内の点散乱波を取得する 際の概念図を示す。散乱は、音響イン ピーダンスの空間微分に対応して発生す る。生体の音響インピーダンスの空間微 分は、さまざまな空間周波数成分を含 むので、これを点散乱体の集合として扱

書線

受信素子

送信素子