動画編:動画システムの最新技術動向と臨床応用

2. 動画システムの最新技術動向

4) 動画の画質評価

血管撮影装置における動画の評価

角田 和 化 / 大川原 由 紀 福島県立医科大学附属病院放射線部

現在, 血管撮影装置の検出器は, image intensifier (I.I.) から flat panel detector (以下、FPD) に移行した。日本 血管撮影・インターベンション専門診療放 射線技師認定機構が出している2018年 データによると、FPDの割合は、2008年 では55%であったが、2018年では98% を占めている。さらに、CPUが格段に高 速化したことによって、大量の画像演算 処理を、ほぼリアルタイムで行えるように なった1)。

最新の血管撮影装置に適用されている 画像処理は、動体補正型リアルタイムピ クセルシフト処理. 動体補正型テンポラ ルノイズ低減処理, 空間ノイズ低減処理, イメージ強調処理などが複合的に組み合 わされている²⁾。そのため、われわれが臨 床で目にする動画は、すでに何らかの画像 処理が行われた後の動画である。本稿では、 動画の基礎から画質評価について解説を 行う。

視覚系における「動き」 の認識

1. 画像情報の検出

われわれが見ている画像や動画は、光 信号として眼球に入る。その後、情報 検知をするために、まずは随意的な選択 的注意を行う。これは、特定の情報を 意識し、ほかの情報を遮断することで、 多数情報の中の特定情報に注意を払う ことである。それから、前注意過程と呼 ばれる、網膜上、周辺視野でわずかな特 徴的情報を検知する。そして、集中注 意過程という、検知したところの中心層 の距離をゼロ調整し、中心視するという 流れである。

2. 光情報の符号化

眼球に入った光は網膜に到達する。 網膜の視細胞層で光の検出を行い、双 極細胞層で水平方向への伝達をし、神 経節細胞層で輪郭の強調をするという 流れになっている。このような経路を経 て. 活動電位への変換が行われる。

3. 情報の一次分析

活動電位に変換された信号は、視交 叉を経て外側膝状体へと向かう。外側 膝状体は、大細胞系・小細胞系・顆粒 細胞系で分析が行われる。それぞれの細 胞系は、色・感度・空間解像力・時間 解像力が異なる。

4. 情報の二次分析

外側膝状体で分析された情報は. 一 次視覚野に伝えられる。一次視覚野で は、モジュール分析という、2500個のモ ジュールによる特徴分析を行う。一次視 覚野のニューロンには、 方位選択性、 空 間周波数, テクスチャ, 視差といった 特徴がある。

5. 情報の統合

一次視覚野で分析をした後は、視覚 連合野で情報統合を行う。背側経路で は位置・運動の知覚、空間知覚を認識 し, 腹側経路では物体の知覚, 方位・ 空間周波数・色・形の弁別を行う。

視覚前野にあるV5, あるいは、MT 野として知られる領域は、動きに反応す るニューロンを含んでいる。V5は、一次 視覚野から直接入力を受けるほか、視 覚前野のいくつかの領域からの入力も受 けている。また、眼球運動の反射による 制御を含む、視覚反射に関与している 上丘からも入力がある。V5のとなりの 領域(V5a, MST野と呼ばれる)は、 動きに関する情報を V5から受け取って, さらなる分析を行っている。これらの視 覚情報処理の流れを図1に示す。

動画の基礎

1. 動画とは

静止画とは時間の経過とともに変化